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WHY NONCONSERVATIVE SCHEMES CONVERGE 
TO WRONG SOLUTIONS: ERROR ANALYSIS 

THOMAS Y. HOU AND PHILIPPE G. LE FLOCH 

ABSTRACT. This paper attempts to give a qualitative and quailtitative descrip- 
tion of the numerical error introduced by using finite difference schemes in 
nonconservative form for scalar conservation laws. We show that these schemes 
converge strongly in LI norm to the solution of an inhomogeneous conser- 
vation law containing a Borel measure source term. Moreover, we analyze the 
properties of this Borel measure, and derive a sharp estimate for the L1 er- 
ror between the limit function given by the scheme and the correct solution. 
In general, the measure source term is of the order of the entropy dissipation 
measure associated with the scheme. In certain cases, the error can be small for 
short times, which makes it difficult to detect numerically. But generically, such 
an error will grow in time, and this would lead to a large error for large-time 
calculations. Finally, we show that a local correction of any high-order accurate 
scheme in nonconservative form is sufficient to ensure its convergence to the 
correct solution. 

1. INTRODUCTION 

The purpose of this paper is to analyze the error introduced by using noncon- 
servative finite difference schemes for the approximation of conservation laws. 
Although it has been well known that a conservative scheme should be used 
in approximating hyperbolic conservation laws, it is still very tempting to use 
a nonconservative scheme in certain contexts because it may give a seemingly 
simpler or more convenient formulation (see, for instance, Zwas and Roseman 
[31], Moretti [26] and Karni [18]). We show in this paper that nonconserva- 
tive schemes in general do not converge to the correct solution and derive the 
equation which the nonconservative schemes approximate. It has the form of 
an inhomogeneous conservation law containing a Borel measure source term. 
Further, we analyze the properties of the measure source term, and estimate 
the LI error between the limit function given by the scheme and the correct 
solution. We show that the measure source term in general does not vanish, 
and is of the order of the entropy dissipation measure (see ??3 and 4). 
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Our analysis also indicates that, in certain cases, the error due to nonconser- 
vation can be small for short times, which makes it difficult to detect numeri- 
cally. But this is deceptive because generically such an error will grow in time. 
This would lead to a large error for large-time calculations, such as steady-state 
calculations. 

Another motivation for this study is to understand how to approximate non- 
linear hyperbolic systems in nonconservative form by finite difference schemes. 
In this case, globally conservative schemes are not appropriate and some kind 
of nonconservative schemes must be used. Theoretically, this is a more diffi- 
cult question, even at the continuous level; see Dal Maso, Le Floch, and Murat 
[6] and Le Floch and Liu [24] for more discussions. On the other hand, this 
question has been addressed computationally, see for instance Colombeau and 
Leroux [1], Trangenstein [28], and Trangenstein and Colella [29]. It would be 
very interesting to analyze the convergence of these schemes. But as a start, we 
focus on an easier problem in the present paper: nonconservative schemes for 
conservative equations. We believe that a qualitative understanding of noncon- 
servative schemes, even for conservative equations, may shed some light on the 
understanding of nonconservative schemes for nonconservative equations. 

Consider a scalar conservation law in one space dimension, i.e., an equation 
of the form 

(I. 1) atu + xf (u) = ?, u(t, x) E R, t > 0, x E R, 

with iriitial value u(O, x) = uo(x). The so-called flux function f: R -+ R is 
a given smooth function, and the initial data u0 belongs to the space BV(R) 
of all functions of bounded variation. As is well known, nonlinear hyperbolic 
equations like (1.1) in general do not admit smooth solutions globally defined 
in time. Weak solutions defined in the sense of distributions must be consid- 
ered. An entropy criterion is also needed to ensure uniqueness in the class of 
weak solutions. See Lax [21] for background on hyperbolic equations, Volpert 
[30] and Kruzkov [19] for an existence and uniqueness result of the entropy 
weak solution to (1.1). Many numerical techniques have been developed for 
approximating (1.1). A class of most widely used schemes is called conserva- 
tive schemes. It is well known from the Lax-Wendroff Theorem [22] that a 
conservative difference scheme-if it converges-converges to a weak solution 
of (1.1). 

The focus of the paper is to understand the error introduced by using non- 
conservative schemes for scalar conservation laws. Specifically, we consider a 
general (possibly high-order accurate) (2k + 1)-point finite difference scheme 
written in an incremental form (and so in general in a nonconservative form). 
Under suitable positivity conditions and a CFL (Courant-Friedrichs-Lewy) sta- 
bility condition on the incremental coefficients, the scheme is shown to be TVD 
(Total Variation Diminishing) by using Harten's lemma [14]. We easily ob- 
tain the LI strong convergence of the scheme from standard compactness ar- 
guments; cf., for instance, [4]. The limit function given by the scheme is a 
function of bounded variation, denoted below by v, that can be very different 
from the exact (entropy weak) solution u of (1.1). We prove the following 
three facts concerning this limit v . 

(1) The function v is a solution to a conservation law containing a measure 
source term. 
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We prove in ?2 that v satisfies the following inhomogeneous conservation 
law: 

(1.2) Ltv + af(v) = ,u, 

where ,i is a Borel measure defined on R+ x R. We show that the measure ,u 
vanishes in the regions where v is a smooth function and the scheme converges 
strongly. The support of ,u is expected to be concentrated on the curves (in 
(t, x)-plane) of discontinuity of the function v. 

This measure, in general, is not identically zero unless the scheme under con- 
sideration admits a conservative form. For instance, we check numerically (in 
?6) that ,u is not identically zero even if the scheme coincides with a conserva- 
tive scheme up to second-order terms. In particular, a nonconservative scheme 
does not necessarily converge to the correct solution of (1. 1), even if it contains 
the same numerical viscosity as the one of a conservative scheme. 

(2) The measure source term can be estimated. 
We next assume that the scheme under consideration is in some sense close 

to a (conservative and entropy-satisfying) E-scheme, e.g., the modified Lax- 
Friedrichs scheme or the Godunov scheme. That restricts our attention to first- 
order accurate schemes, only. For these schemes, we can prove discrete entropy 
inequalities, which yield the following entropy inequalities for the function v: 

(1.3) Ot ?1(v) + Oxq(v) < u,1. 

In (1.3), (q, q) is any entropy-entropy flux pair for equation (1.1), while /1,1 is 
a Borel measure depending on the entropy q and satisfying the bound 

(1.4) I,u,1 < (sup 10l l,ul 

as Borel measures. Here the supremum is taken over all u in the interval 
[infuo, sup uo], and Lu,, I and L,uI denote the measure of total variation of ,/I 
and ,u, respectively. 

We are able to derive an error estimate between v and the exact entropy 
weak solution u of (1.1). Here we assume that the nonconservative scheme 
under consideration coincides with a conservative one up to pth-order terms. 
Combining (1.3)-(1.4) with a result of DiPerna and Majda [8] leads to an error 
estimate. We prove that for every time t > 0, 

(1.5) j Iv(t, x) - u(t, x)l dx < Ct(ampl(uo))P-'TV(uo), 

where C is a positive constant (depending on the scheme only), ampl (uo) 
denotes the amplitude of the initial data and TV(uo) its total variation. Note 
that the error bound (1.5) grows linearly in time; however we also derive in this 
paper an estimate similar to (1.5) which is uniform in time. 

In ?4, we also provide a lower bound of this measure source term for a non- 
conservative version of the upwind scheme and the modified Lax-Friedrichs 
scheme. We show that for the upwind scheme, the measure source term coin- 
cides with the entropy dissipation measure (see Lemma 4.2). Thus the measure 
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source term cannot vanish identically if the solution contains discontinuities. 
Our estimates show that the measure source term is of the same order as the 
entropy dissipation measure. 

Inequality (1.5) also shows that the error due to nonconservation could be 
small if the initial data is close to a constant. In this case, the error is difficult to 
detect. This is illustrated by numerical examples in ?6. However, the smallness 
of the error is deceptive since the error will typically grow with time. The 
error due to conservation may accumulate to a large amount for large-time 
calculations, such as steady-state calculations for aerodynamics equations. 

(3) A local correction of a nonconservative scheme is sufficient to ensure its 
convergence to the correct solution. 

This part considers again high-order accurate difference schemes. We propose 
in ?5 to modify any nonconservative scheme by doing a local correction only 
in the neighborhood of the discontinuities of the solution. If the gradient of 
the numerical solution exceeds some given bound (depending on the mesh size) 
in some region, we switch from the nonconservative scheme to a conservative 
scheme. We emphasize that this correction is performed only locally. After 
correction, the resulting scheme is still in nonconservative form. We refer to 
Harten and Zwas [16], Leroux and Quesseveur [25], and Harabetian and Pego 
[13] for similar treatments in the case of conservative schemes. We do not 
know if our correction is useful from a practical standpoint. We prove in ?5 
that a nonconservative scheme after correction converges to the correct (entropy 
weak) solution of (1.1). In other words, ,u = 0 in equations (1.2) and ,u, = 0 
in (1.3), so that v _u. 

We mention a pioneering work on this type of question by DiPema in [7]. 
He proved (in the context of systems of conservation laws) the convergence of a 
scheme in nonconservative form defined by hybridization of the Lax-Friedrichs 
scheme and the random choice scheme introduced by Glimm [10]. 

Our results show that nonconservative finite difference schemes in general 
do not converge to the correct solution, even if the scheme contains the same 
numerical viscosity as that of a consistent conservative scheme. This implies 
that it is not enough to correct at the formal level the numerical viscosity of a 
nonconservative scheme, as Karni suggested in [18]. This point will be further 
elaborated in ?6. We point out that for nonconservative hyperbolic systems, 
it has been proved in [24] that the Glimm scheme converges to the correct 
solution. 

Related work can also be found in the papers of Goodman and Lax [12] and 
Hou and Lax [17] on the convergence of dispersive schemes. In that situation, 
the weak limit of the oscillatory solutions given by dispersive schemes does not 
satisfy equation (1.1). 

An outline of the paper is as follows. In ?2, we derive the limit equation with 
measure source term associated with a scheme in nonconservative form. Section 
3 gives an estimate of the error due to nonconservation. Several examples are 
given in ?4, which show that the error source term does not vanish as the mesh 
size tends to zero, and is of the order of the entropy dissipation measure. Section 
5 presents a method of correction of any nonconservative scheme. Finally, we 
present in ?6 numerical experiments, which confirm the analytical results of this 
paper. 
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2. LIMIT EQUATION ASSOCIATED WITH A SCHEME 

IN NONCONSERVATIVE FORM 

This section introduces the nonconservative schemes under consideration, 
and states their elementary properties of stability and convergence. We derive in 
Theorem 2.1 the equation satisfied by the solution of a nonconservative scheme 
in the limit. This equation contains a Borel measure source term. In Theorem 
2.2, we analyze this measure in some detail, and show that the measure is 
supported along the curves of discontinuity of the solution. 

Let h and z be the space and time increments of the discretization, and set 

xi = ih, xi+112 =(i + 1/2)h, tn = nz for iEZ, nEN. 

The ratio A = T/h will always be kept constant. We consider approximate 
solutions to problem (1.1) that have the form 

(2.1a) uh(t, x) = u, X E [xi_1.22, xi+112), t E [tn , tn+l). 

We compute {u?}iEz by L2 projection of the initial data u0, as follows: 

(2.1b) uQ = h j uo(Y)dy, i E Z. 
Xl-/2 

We then determine {un+'}ZEZ from {u}iEz by the following (2k + 1)-point 
finite difference scheme in incremental form: 

(2. 1 u +l = u C - u1) Dn (un nu), i E Z V . Cy Ui = U Cin- -/ 2(Ui -Uil + i+/2 Ui+liJ I 

where 
(2.1d) 

Cin/= C(U2iUk, * *, Ui+k-1; A)), D7+1/2 = D(uni7k+l, * **, u+k; i 

In (2. Id), the incremental coefficients C and D are Lipschitz continuous func- 
tions defined from R2k x R+ into R. We also assume in what follows that 
the coefficients C and D are consistent with the flux function f of equation 
(1.1), in the sense that 

(2.2) Qao,***, ao;A)-D(ao, ao; A) = Af(ao) fora0 E R. 

We recall classical conditions on C and D which guarantee the uniform 
stability in L?? and BV norms for the scheme (2.1a)-(2.1d). We refer to 
Harten [14] for a proof. We emphasize that the proof of [14] does not require 
the scheme to be conservative. Throughout this paper, we denote the total 
variation in x of a function w by TV(w). 

Lemma 2.1. Suppose that the functions C and D satisfy the positivity property 

(2.3a) C(a; A) > 0, D(c; A) > O for all ae R2k, 

and the CFL stability condition 

(2.3b) C(a; A) < 1/2, D(ca; A) < 1/2 forall c E R2k. 

Then the scheme (2. la)-(2. Id) satisfies the local maximum principle 
(2.4a) 

min(un k,.. .,u +k) +1 < max(uinnk,* u7+k)n n E N, i E Z, 



502 T. Y. HOU AND P. G. LE FLOCH 

the TVD (Total Variation Diminishing) property 

(2.4b) TV(uh(tn+1)) = Zu7+1 - u0+ I ?< TV(uh(tn)) = Z u I - I 
iEZ iEZ 

and the L1 Lipschitz continuity property 

IIuh(tm) -u(tn)IILl(R) I U7 -uIh ? 
,jItm 

- tnITV(uo), 
iEZ 

for any n,m eN. 

By means of Lemma 2.1 and Helly's compactness theorem, it is a classical 
matter to verify that (a subsequence of) {u h} defined by (2.1 a) converges in 
Li to a function v: R+ x R -* R which satisfies 

(2.5a) infuo < v(t, x) < supu0 for almost every (t, x) E R+ x R, 

(2.5b) TV(v(t')) < TV(v(t)) for t' > t > 0, 

and 

(2.5c) IIv(t') - v(t)IIL1(R) < -It tI TV(uo) for t, t > 0. 

However, the function v = lim uh need not be a solution of the conserva- 
tion law (1.1). This is in strong contrast to the case of conservative schemes: 
namely for conservative schemes the property of Li c (or almost everywhere) 
convergence is sufficient for the passage to the limit in the scheme (2.1c), and 
the function v = lim uh must be a weak solution to (1.1) (see Lax and Wendroff 
[22]). This is not necessarily the case for schemes in nonconservative form. 

Our aim now is to derive the equation satisfied by v. 

Theorem 2.1. Suppose the scheme (2.1a)-(2.1d) satisfies the properties (2.2)- 
(2.3b). Then the function v = limuh is a weak solution (in the sense of dis- 
tributions) of the following conservation law with a source term: 

(2.6) 6tv + Oxf(v) = P, 

where ,u is a locally bounded real-valued Borel measure defined on R+ x R and 
characterized as follows. 

Let C and D be the incremental coefficients of any conservative scheme sat- 
isfying condition (2.2). Then the measure ,u in (2.6) can be characterized as the 
weak-star limit of the following sequence offunctions, which is uniformly bounded 
in LIc(R+ xR) 

(2.7a) wh(t, x) = Wi, X E [Xi-1/2, Xi+ 12), t E [tn , tn+li) 

and 

(2.7b) w7 = h (Cni 2I- C- 19(u7 - u.) - (D7n+12-D7n+19(u71-u7), 

for i E Z, n E N. 
Proof. With C and D being the incremental coefficients of any (21 + 1)-point 
conservative scheme consistent with (1.1), we can rewrite the nonconservative 
scheme (2.1a)-(2.ld) in the form (i E Z, n E N) 

u u- 7 (uiD-u + - ) + hw1n, i 7 Cn-,2(4 I li+ 1/2 (U+1 I 
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where wi is defined in (2.7b). Since C and D correspond to a conservative 
scheme, there exists by definition a numerical flux function g: R21 x R+ - R 
such that 

CinU112(u7 - u1) + i+-u) = i+2- gi-112) 

where g = g(u i ..., ui+1; A). We thus obtain 

(2.8) - -u'2"Lij) - = wU. 

By the Lax-Wendroff theorem, the left-hand side of (2.8) has a limit in the sense 
of distributions: 

Otv + aOf(v). 

Concerning the right-hand side of (2.8), we have for any T > 0 

Z Zlw~Inhz 
nTr<T iEZ 

< (In- 112 - Cin1 1/21I1Ui - U + i+1/2 i D+112114u+ I -u71)z 
nTr<T iEZ 

< (sup ICI + sup ICI + sup IDI + sup IDI) E TV(ub(tn))r, 

nT<T 

where the suprema are taken over all u in the interval [inf uo, sup uo] (cf. 
(2.4a)). In view of property (2.4b), we obtain the bound 

(2.9) ZIwIhT < O(l)TTV(uo). 
nTr<T iEZ 

Estimate (2.9) shows that the sequence {wh} defined by (2.7a)-(2.7b) is 
uniformly bounded in LI c. Therefore, it converges in the weak-star sense of 
bounded measures to a Borel measure denoted by ,u. As a consequence, (2.8) 
implies (2.6). The proof is completed. 5 

Remark 2.1. It is worth noting that the definition of ,u is independent of the 
conservative scheme considered. Let C' and D' be the incremental coefficients 
of (another) conservative scheme consistent with (1.1). Set 

w (t, X) = W for x E [xi_112 Xi+112), t E [tn, tn+l) 

with 

,f 1n -&n 1, - D 
w = h-(C' I/2 - 

Cin12)(u 
- )-h (D'+ 12 -iD7+112(u0+1 

- u). 

The sequences {wh} and {wfh} converge in the sense of distributions to the 
same Borel measure. Indeed, one has 

,n _W In ,fI 1n n ) w -W. = { h 1 _ - l /2 (U - _ -h D' i+ 1/2 (Ui+ 

, 

Cin 
1/2(i 1),Di+12(u - 1 U -{C1in 2 (u - u7i1) - y-Di+1/2(i+1-u} 
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where each expression in parentheses admits by assumption a conservative form, 
and hence converges in the sense of distributions to the same term A, f (v) . This 
proves that the sequence {wlh - wh} tends to zero weakly. 5 

Next, we analyze the support in the (t, x)-plane of the measure ,u intro- 
duced in Theorem 2.1. We conjecture that this measure is concentrated on the 
curves of discontinuity of the BV function v . We do not prove here this result 
in its whole generality. But we show that ,u must vanish identically in regions 
where uh converges uniformly with respect to x. Moreover, we show that, 
in the regions of monotonicity and continuity of v, strong convergence is a 
consequence of the TVD property of the scheme. We also check that the mea- 
sure ,u is absolutely continuous with respect to the entropy dissipation measure 
associated with the scheme. 

Theorem 2.2. 1) Define the entropy dissipation measure ,B as the weak-star limit 
of the sequence 

bh(t, x) = (u7 _ - 1)2/h, x E [xi_112, xi+112), t E [tn, tn+1). 

Then the measure ,u introduced in Theorem 2.1 is absolutely continuous with 
respect to the entropy dissipation measure ,B. 

2) Let Q be an open subset of the (t, x)-plane. Suppose that 

(2.10) uh .- U in L 1((Tl, T2) L?? (a, b)) 

for all compact subsets [T,, T2] x [a, b] c Q. Then the measure ,u found in 
Theorem 2.1 vanishes identically in the set Q, i.e., ,u(B) = 0 for each compact 
set B c Q. 

3) In particular, the above assumption (2.10) is satisfied for any set Q in 
which, for almost every time t, v(t) is continuous with respect to x and each 
function uh (t) is nondecreasing (or nonincreasing) with respect to x. 

Proof. We assume first that (2.10) holds, and fix a subset [T1, T2] x [a, b] 
of Q. Let 0 be a test function with support in (T,, T2) x (a, b) and set 
O6 = 6(xi, tn) . We are going to prove that f 0 d, = 0. We have, by definition 
(2.7b), 

E Z w IIhz 
a<x,<b Tl<tn<T2 

= Y E {67irl (Ci-1/2- Ci112) 
- I_ 1 (U112 2-D 1/2)}(u7 - u7l)z 

a<x,<b Tl<tn<T2 

E E 67 {C-112-D7-i12-CU2 l/2 + D72_C12}(u72-u71D)T 
a<xi<b T?<tn<T2 

+ E (06 _ - )(D7 2-D7)T.2)(u7-u71)z. 

a<xi<b T?<tn<T2 

In view of (2.2) and the Lipschitz continuity of the incremental coefficients, we 
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deduce that 

a<x,<b T?<tn<T2 

k-1 

< 0(1) Z 1711U7 -UUI I: Un7+j-u |T +0(l)h Z Iu -u IT 
a<x, <b j=-k a<xi<b 

T1 <tn<T2 T1 <tn < T2 

< 0(1) 1E jIU 7u7-uJ2rT +O(l) h Z 10u-u7I IT 
a<x,<b a<xi<b 

Ti < tn < T2 T1 < tn < T2 

< 0(1) E sup Iu+ -u I/TTV(uo) + O(l)hTV(uo), 
<T a<x,<b 

where we have used (2.4b) for the last inequality. Because of the assumption 
(2.10), we obtain 

labJT76WhdXdt=Tij{a<x,<b T1 

<tn 

whT2 = so the restriction wh I(a,b)x(T , 2) tends to zero weakly, and 

u = limwh = 0 in (a, b) x (T1, T2). 

The second assertion of the theorem follows. The statement 1) of the theorem 
is a consequence of the above inequalities. To see this, we note that the above 
derivation implies 

Z ZO7 w?0hzw O < 0(l) Z101HUi+I-Ui12z 
iEZ nEZ iEZ nEZ 

for any test function 0. Passing to the limit, we get 

OJ0dy| = I(# , 0)1 ' 0(1)(fl, 1ol) = O(l) 1 01 df, 

which means that the measure j is absolutely continuous with respect to the 
entropy dissipation measure ,B. 

We now prove the third assertion of the theorem. We suppose that in a set Q 
and for almost every time t, the function v (t) is continuous in x and that each 
function uh(t) is monotone in x . We fix a compact set [T1, T2] x [a, b] c Q. 
In view of the monotonicity of the function uh (to, .) , the continuity of v (to, -), 
and the convergence almost everywhere of uh (to,.), Dini's Theorem shows 
that, for all times to in (T1, T2) except those in a set of measure zero, 

(2.11) uh (to, .) __ v(to, .) uniformly in [a, b]. 

Since (2.11) holds for almost every time t in (T1, T2), the Lebesgue conver- 
gence theorem implies (2.10). The proof is complete. 5 

Theorem 2.2 can be applied in particular to the case that the initial data 
uo admits a finite number of points in which monotonicity changes. Since the 
scheme (2. la)-(2. ld) is assumed to be TVD, an initially monotone region in the 
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initial data generates a monotone approximate solution uh. In these regions, 
assumption (2.10) of Theorem 2.2 holds. Dealing with the points in which 
monotonicity changes would require further analysis, cf. Le Floch and Liu [23]. 
We summarize the results of Theorems 2.1 and 2.2 as follows: 

Corollary 2.1. The nonconservative scheme (2.1a)-(2.1d) converges in the Lloc 
norm strongly to a function of bounded variation v that is a solution to a con- 
servation law with a measure source term t: 

(2.12) &tV + &xf (v) = u. 

If uo has a finite number of points in which monotonicity changes, and v is 
piecewise continuous, then, at least for small times, the measure ,Y is concen- 
trated on the union of the curves of discontinuity of v and the curves of points 
in which monotonicity of v changes. 

The assumption of piecewise continuity of v is realistic, since it is known- 
at least for (1.1)-that solutions of conservation laws are generally piecewise 
smooth (Dafermos [5]). In our case, proving this property is difficult because 
we do not know explicitly the equation satisfied by v; so the proof by Dafermos 
does not generalize. Also, the method of proof introduced by Glimm and Lax 
[11] was for the Glimm scheme, and it is not clear how it could be extended 
to schemes with numerical viscosity, such as the difference schemes considered 
here. See, however, [23]. 

Studying the convergence of nonconservative schemes requires information 
on the local convergence of the scheme (in the spirit of Glimm and Lax). But 
such a result of local convergence is not known for difference schemes, even 
in the conservative case (Kuznetsov's error estimate, e.g., [20] and [27], is an 
LI estimate; here we need LlO convergence!). Furthermore, note that we only 
obtain that a subsequence of {u h} is convergent. This is due to the fact that 
we do not have a uniqueness theorem for equations with measure source term, 
like (2.12). 

3. ESTIMATES FOR THE ERROR DUE TO NONCONSERVATION 

In this section, we prove in Theorem 3.3 a LI estimate for the difference v-u 
between the limit function v = limuh given by the scheme (2.1a)-(2.1d) and 
the entropy weak solution u of (1.1). To this end, we derive for the function 
v entropy inequalities containing error terms similar to (2.6); cf. Theorem 3.1. 
Next, in Theorem 3.2, we follow arguments due to DiPerna and Majda [8] to 
analyze the resulting entropy inequalities with measure source terms. 

To begin with, we estimate the entropy dissipation of the scheme (2.1 a)- 
(2.1 d) by comparing the scheme with the (modified) conservative Lax-Friedrichs 
scheme, or more generally with any E-scheme. We recall that the modified Lax- 
Friedrichs scheme is characterized by its incremental coefficients: 

(3.1a) CLF(a1, &2; A) = _+ f(a2) f(&i) 1 
2 &2-&1 + 4 

(3.lb) )~~~~f(A 2) -f(Ce1) 142 
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An E-scheme is characterized by the following incremental coefficients: 

A )Pfa2) - gE(a I, a2) 
( 3. 1 aa) CE (al a 2; A ) = a '2 - aE l 1,2) 

( )= f(al) -gE(al , a2) 

where gE: R2- R must satisfy 

(a2 - a1)(gE(al , a2; A) - f (w)) < 0 

for all (aI, a2) E R2 and for every w between a2 and a I. We consider the 
scheme in incremental form (2.1a)-(2.1d) under the assumptions (2.2)-(2.3b). 
Moreover, we assume that 

k-i 

(3.2a) ICQa;A) - E(ato,ab; A) < A1(A) E laj+1 -ajlP S 
j=-k+1 

k-i 

(3.2b) ID(a; A)-DE(aO), a; ) ? A2(A) Iaj+l-ajlP 
j=-k+l 

for all a = (a-k+i, .... , I ak) E R2k, A1 = A1(A) and A2 = A2(A) being two 
positive constants and p > 1 an integer. Assumption (3.2a)-(3.2b) expresses 
that the scheme (2.1a)-(2.1d) is "close enough" to an E-scheme (cf. examples 
in ?4). 

We now define a (nonnegative) locally bounded Borel measure ,i by 

(3.3aa) ,i = weak* lim w^, 

(3.3bb) wXh(t,Ex) = , xe[X I Xi+,2) t E [tn, tn+l), 

and 

gn =: j,i usn j - un j_ljpjus-uq 11 Ai - ) 
i 

- u7+ ~~u 

(3.3cc) j-k+1 

+ A2(.) lq Uj++1+_-u+1jlplnuI+ -u7. 

j=-k+l 

(Eventually, one needs to extract a subsequence of Wh.) 

We recall that a Lipschitz continuous function (n, q): R -+ R2 is a convex 
entropy-entropy flux pair (or entropy pair, for short) for equation (1.1) if one 
has 

n strictly convex, and q' = fl. 

Theorem 3.1. Consider the scheme (2.la)-(2.1d) under the assumptions (2.2)- 
(2.3b) and (3.2a)-(3.2b), together with its limit v = lim uh. Then, for each 
entropy pair (rj, q), one has 

(3.4) at?1(V) + Oxq(v) < (sup JI ()f, 
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in the sense of distributions, where A is defined by (3.3aa)-(3.3cc) and the supre- 
mum is taken over the interval [inf uo, sup uo]. 

Remark 3.1. In view of hypothesis (3.2a)-(3.2b) and the definition (3.3aa)- 
(3.3cc) of Ai, the measure ,u defined in (2.7a)-(2.7b) satisfies -/i < ,u < f. 
Note that At is by definition nonnegative, while the measure ,u has no specific 
sign. 5 

To prove Theorem 3. 1, we derive discrete entropy inequalities for the scheme 
(2.1a)-(2.1d). Given an entropy pair (C, q), we denote by QE a numerical 
entropy flux corresponding to the E-scheme (3. 1aa)-(3. 1bb). 

Lemma 3.1. Under the assumptions of Theorem 3.1, one has 

(3.4a) q(un+l) - /(u) -)A(QE(u u +i) 1)- QE(uW 1, Ui)) < I sup l|'l 

Lemma 3.2. Under the assumptions of Theorem 3.1, and if the flux is convex, 
one has 

S (un+l) - (u7) + A(inf f")(inf C") 5 u7+i +-U7I3 
(3.4b) iEZ iEZ iEZ 

< Tinbsup I 'I. 

iEZ 

If, moreover, the E-scheme of reference is chosen to be the Lax-Friedrichs scheme, 
and if the CFL condition 

)sup If'I < 2 -0 forsome 0 E (O, 1/2) 

is satisfied, then, without assuming convexity of f, one has 

(3.4c) { ?(un+1)-q(u) )-I(Q(u, u7+) - Q(u7I, u7)) 
+32(inf7 i") (1u7 - u_112 + Iu+ I- u12) < lTjb SUp I1'I. 

Proof of Lemma 3.1. We decompose the scheme (2.la)-(2. 1d) in the form 

un+ = i&1 + (un+1 -us+1) iEZ, nEN, 

where {Ua71}iEZ is obtained from {u}i}Ez by the E-scheme (cf. (3.laa)- 
(3. 1bb)). It is known that the latter satisfies discrete entropy inequalities: 

(3.5) 7)(a7+1)-K/(u7)-)(QE(u7, u0+l)-QE(uI7 , u)) 0, iFEZ, nEN. 

The left-hand sides of inequalities (3.4a) and (3.5) only differ by the factor 
q(u7n+l) - q(ai&1), which we now estimate. Since q is a convex function, and 
using (2.1c), we have 

q(un+l) - 7(fn+l) < q(un+1)(u7n+1 - n+l 

- 7(ui+1 ){-(Cin112 - 
C1/12)(u7 - u7i) + (D7n12- D71+1/2)(u7+1 - u7)}. 

Then we use (3.2a)-(3.2b) and (3.3cc) to deduce from the above inequalities 
that 

(3.5a) q (un 1) (uin+ 1) < Ti sup I r//I 

Combining inequalities (3.5) and (3.5a) gives (3.4a). E 
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Proof of Lemma 3.2. We follow the argument in the proof of Lemma 3.1, but 
now use the stronger entropy inequalities proved by Coquel and Le Floch [2]. 
If {i0+1} is obtained from {u7} by an E-scheme, then [2] gives 

( n -E 5 q(U7) + A (inf f")(inf 7")j5 IU7 -U u13 < 0. 

iEZ iEZ iEZ 

Combining this inequality with (3.5a) in the proof of Lemma 3.1 gives (3.4b). 
In the special case of the Lax-Friedrichs scheme, it was proved in [2] that 

(3.5b) 1)- q(0) + 
0 

(inf j")(Iu7 
- 

u7I2 + Iu7+i I12) < 0. 

Thus, in that case, one obtains (3.4c). E 

From the discrete entropy inequalities (3.4a) given by Lemma 3.1 we de- 
duce immediately the result of Theorem 3.1: the function v = lim uh satisfies 
entropy inequalities containing measure source terms. We omit the proof of 
Theorem 3.1. We are going to deduce from the entropy inequalities (3.4), sat- 
isfied by v, the desired LI error estimate. To this end, we recall a result of 
DiPerna and Majda [8] (therein, conservation laws with measure source term 
were useful to analyze the method of nonlinear geometric optics). 

Theorem 3.2. Let u be an entropy weak solution of (1.1) in LI (R+, BV(R)). 
Let w be any function in LI?(R+, BV(R)) satisfying the entropy inequalities 

(3.6) &t7)(w) + Ox q(w) < (sup Iq'l) ft 

for all convex entropy pairs (q, q), where 1a is an arbitrary nonnegative Borel 
measure on R+ x R independent of the entropy r. Then, for any time t > 0, 
one has 

(3.7) lw w(t, x) -u(t, x) I dx < 1 w(O, x) -u(O, x)l dx + i(R x [O, t)). 

The proof of Theorem 3.2 is easy from the arguments of [8]. We now choose 
w = v and 1a = At in Theorem 3.2. The main assumption (3.6) of Theorem 
3.2 is precisely the conclusion (3.4) given by Theorem 3.1. We thus have the 
inequality (3.7) with w = v (here, v(O, x) = u(O, x) in view of (2.1b)). It 
only remains to estimate the mass /i([O, t) x R) of the measure At defined by 
(3.3aa)-(3.3cc) in terms of the size of the initial data uo. This is done in the 
following theorem. 

Theorem 3.3. Consider the scheme (2. la)-(2. id) and its limit v = lim uh under 
the assumptions (2.2)-(2.3b). Suppose that the scheme is close to an E-scheme, 
in the sense (3.2a)-(3.2b). Then the following error estimate holds, for every time 
t > 0: 

(3.8) j Iv(t, x) - u(t, x)l dx < 2k(AI + A2)tTV(uo)(oscil(uo))P, 
J 

where u is the entropy solution of (1. 1) with initial data uo and the oscillation 
of the initial data uo is defined by 

oscil(uo) = sup uo - inf uo. 
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if moreover, the flux function f is convex and the constant 

(3.9) K = (inff") - IIuOIIL-(oscil(uO))p-2 4k(Al +A2) 

is positive, we have the uniform in time estimate: 

(3.10) Rv(t, x) - u(t, x)Idx < K (Al +A2)IIuoIIL2 (oscil(uo))2 

In the special case of the Lax-Friedrichs scheme (even if f is not convex), if the 
CFL condition 

)supIf'l < 2 - 0 for some 0 E (1, 1/2), 

is satisfied and if the constant L defined by 

(3.11) L = - IIuoIIL-oscil(uo)P 14k(Al +A2) 

is positive, then we have 

(3.12) Iv(t, x) - u(t, x)I dx < L (Al + A2)IIuoII2 (oscil(uo))P I 

Proof. By Theorem 3.1 and Theorem 3.2 it is clear that 

(3.13) jIv(t, x)-u(t, x) Idx < k([O, t) x R). 

In view of (3.3aa)-(3.3cc), we have 

k 

(3.14) ,i([0,~ t) x R) < (Al + A2) liM I u7+j -u4+j_ I IP I u-u_l IT. 
h-+ 

EZ j=-k+i 
nE N, tn <t 

Using the maximum principle and the TVD property (2.4a), (2.4b), one finds 

P([O, t) x R) < (A1 + A2)2k(oscil(uo))P lim S Iu7 -u71IT 
h--+0 I 

iEZ, nEN 

< (Al + A2)2k(oscil(uo))P lim E TV(uo)t 
h- 

tn <t 

< (Al + A2)2kt(oscil(uo))PTV(uo), 

which proves estimate (3.8) in view of (3.13)-(3.14). 
To get the estimate (3.10), we start from the discrete entropy inequality 

(3.4a), 

1 
(n+1 )2 _ (Uin)2 + 6(n " f+1U - (U - ~+(inff") I un -u7I3 

iEZ iEZ iEZ 

k 

iEZ j=-k+1 
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where for definiteness we have chosen ii(u) = u2/2. After summation with 
respect to n, we have 

S 1 jun+1)2 - Z (u)2 + U(inff") E U7+i1- u7I 

iEZ iEZ nEN 
nEZ, tn <t 

< IIu0IIo(Ai + A2)(oscil(uo))P-22k J Iu7 - u7113. 
lEZ 
nEN 

Since the first term in the left-hand side of the above inequality is nonnegative, 
we obtain the uniform estimate 

(3.15) K E Iu+ I U713h < 5(u)2 h < IIUOII12(R), 
nEN iEZ 
iEZ 

where the constant K is defined by (3.9) and is assumed to be positive. 
Finally, from (3.14) and (3.15), we deduce 

f([O, t) x R) < (A1 +A2)(oscil(uo))P-22k lim {Z Iu7+i-u713j 
nEN 
tn <tJ 

= (Al1 + A2) (oscil(uo))P-2 
2kU 

lim { uql3 h (A1 + 
~~~~~h--+O 1 E uI3h 

nEN 

< (A1 + A2)(Kscil(uo))P 22kLKkIIuoII2(R), 

which completes the proof of (3.10). The proof of (3.12) can be obtained in a 
similar fashion. E 

Remark 3.2. (1) If uo, u and v are of order 0(e), then estimates (3.8) or 
(3.12) give a bound of order 0(cP+1), while (3.10) is of order 0(eP) . 

(2) When K given by (3.9) is positive, the entropy dissipation of the E- 
scheme is larger than the error to conservation made by using the nonconserva- 
tive scheme. This explains why a uniform in time estimate can be derived in 
that case. 

(3) It would be quite interesting to obtain an error estimate in terms of the 
amplitude of the discontinuities only, instead of the amplitude of the initial 
data. Such a result would be more realistic since the nonconservative scheme is 
expected to converge if the solution has no discontinuity. Unfortunately, as in 
?2, to prove such a result, we would need to be able to work with LfO instead 
of L1. 

(4) The assumption of convexity made in this section can probably be relaxed. 
See Coquel and Le Floch [3], where discrete entropy inequalities, similar to the 
ones used here, are derived in the case of a general (i.e., not necessarily convex) 
flux function. 

4. EXAMPLES OF NONCONSERVATIVE SCHEMES 

We focus here on two examples of nonconservative schemes, that we call non- 
conservative upwinding scheme, and nonconservative Lax-Friedrichs scheme, 
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respectively. We check, in particular, that these schemes satisfy the main as- 
sumptions (3.2a) and (3.2b) needed in ?3 to get the error estimate. 

We assume for simplicity that 

(4.1) f' >0 and f">O. 

In particular, we may consider the Burgers equation with positive data: 

(4.2) f(u)=- with u > 0. 
2 

We introduce the nonconservative upwinding scheme 

(4.3) Un+1 = 0 - A a(ui_l ui) (un - ul _ nEN, i EZ, 

where the "numerical speed" a: R2 R is a given Lipschitz function. The 
choice 

J3l -f(a) (4.4) a,(az, )=fl) f ( ), ((x,/) E R2 

corresponds to the (usual) conservative upwinding scheme. A function a which 
differs from (4.4) yields a scheme which does not admit a conservative form. 
In general, we only assume that a is consistent with the flux f, i.e., 

(4.5) a(a, a) = (a), ae E R, 

so that 

(4.6) a(oa, /B) = a, (e, /1) + O(Ia - f/1). 
We also want to consider the case of functions, say a2, which coincide with a, 
up to the first-order terms, i.e., 

(4.7) a2(a , ,B) = a, (e, 3 ) + ?(lo, _ g12). 
For definiteness, we construct a class of such functions a2 as follows. Let 
(U, F): R -* R2 be a convex and increasing entropy-entropy flux pair for equa- 
tion (1.1), i.e., 

(4.8) U' >0, U" >0 and F'= f'U'. 

Again, in the case of Burgers's equation (4.2), we can choose (U, F) as follows: 

(4.9) U(u) =- and F(u) = with u > 0. 
2 3 

Then we set 

(4.10) a2(a, /) U- () -F(a) (a,/a)eR2 

It is not hard to verify that property (4.7) holds in this case because of (4.8). 
Another way to compare the speed a2 given by (4.10) with the conservative 

choice (4.4) is provided by the "equivalent equation", which is formally derived 
from a scheme by performing Taylor expansion. 

The equivalent equation for the scheme (4.3) with a satisfying only (4.5) is 
found to be 

&tw + &xf (w) = h2 j-f"(w) + 2 Oa (w, w)5 (wx)2 

+ 2 x ((1 - if'(w))f'(w)wx). 
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For the function a = a2, it can be easily verified by using (4.8) that 

Oa (w, w) = f"(w)/2. 

Thus, we obtain in the latter case, 

(4.11) OtW + Of(W) = 
h 

Ax (( 1 - Af'(w)) f '(w)oxw) . 
Equation (4.1 1) is independent of the specific entropy pair (U, F) and in par- 
ticular, coincides with the equivalent equation associated with the conservative 
upwinding scheme. Roughly speaking, the scheme (4.3) with a = a2 contains 
the same numerical viscosity terms as those of the scheme (4.3) with a = a1. 
Naively, one may think this property is sufficient to ensure that the nonconser- 
vative scheme converges to the correct solution. This is because the viscosity 
terms are expected to "control" the formation and the evolution of the discon- 
tinuities in the solution. We will see in ?6 that this need not be true, although 
there may be exceptions in some very special cases. 

We next want to estimate the measure ,u associated with the scheme (4.3). 
By Theorem 2.1, u is the weak* limit of the sequence wh - {wi} given by 

(4.12) w = {a(u ,u7) - a,(u , u7)}l h -1) 

In view of (4.5), condition (4.6) holds, and thus (4.12) gives 

jwij l< O( l )I llu7 - UlI i2. 

This gives an immediate proof of the following lemma. 

Lemma 4.1. Assume that the function a in scheme (4.3) satisfies (4.5). Then 
the measure ,u is absolutely continuous with respect to the measure of entropy 
dissipation of the scheme. 

Lemma 4.2. The measure ,u associated with the scheme (4.3) under the assump- 
tion (4.5) does not vanish in general. 
Proof. It is sufficient to give one example, say 

a(a, fl) = k(fl - a) + f (a) f (l) 

with k > 0. Then one has 

Wi = 
k 

(ui - ui-)2 

thus 
jw7IhT = k Zlu -u _ 112 T. 

i,n i,n 

The last term is the entropy dissipation of the scheme. In that case, the measure 
,u and the entropy dissipation measure coincide. But the entropy dissipation 
measure cannot vanish identically if the solution contains discontinuities. 5 

If a = a2, then using (4.10) and (4.12) gives 

(4.13) W { U(n )-U(n l ) fu-fu )} h 

By means of (4.8), it is tedious but not difficult to verify the following lemma. 



514 T. Y. HOU AND P. G. LE FLOCH 

Lemma 4.3. The sequence {wi } defined by (4.13) satisfies 

(4.14) = j j G"(( 1-7a) Uin 1/2(s) + aU(U7_ 1/2(SM 
(4.1/4) (u 

o 

*(U(u 1/2 -) -Ui 1l2(s)) dcads h 

with ULn l/2(s) = (1 -S) U(u12 l ) + sU(uI) and u7112(s) = (1 S-s)uI_ + su7, 

and G:R-*R is defined by G(a))=F(U-1 (a)). 

Formula (4.14) can also be written as 

w -=1-(u7 - U71)3 G"(gl(a, s))U"(g2(t, r, s))s(1 -s)-idsd-drda, I h I I~~~~[ 1]4 

where 
g (a, SS) = ( -C)UUi- 1/2 (s) + a U(U7_ 1/2()) 

and 
g2(T, r, s) = u7 + T(1-r + sr)(u7 - u71). 

The explicit formula (4.14) for the error term wi is especially interesting be- 
cause it implies the following result: 

Lemma 4.4. Consider the scheme (4.3) and (4.10) under assumption (4.8). Sup- 
pose that {u7 } is nonincreasing with respect to i for all n; then the error term 
wi defined in (4.13) satisfies the following bounds: 

(4.15) Ml h ' < < h2 h < 0? 

where M1 and M2 are two positive constants depending only on the scheme and 
the L?? norm of the initial data. 

Proof. It is not hard to verify that the function G satisfies 

G"(a) = f"(U- (a))/U'(U-l (a)) for all a E R. 

This implies that G is a strictly convex function because f is strictly convex 
and U' is positive. By (4.8), U is also strictly convex, thus the result follows 
from (4.14). 5 

By Lemma 4.4, proving that the scheme (4.3) and (4.10) does not converge 
to the correct solution is equivalent to showing that the cubic term 

(4.16) (U 1 )3T 

i,n 

does not vanish as h -* 0. Here the sum is over a compact set of the (t, x)- 
plane. It seems difficult to establish this fact for the scheme since we do not 
know any analytical structure of the numerical solution a priori. 

Recall that the difference scheme under consideration contains a viscous term 
of order O(h). Thus, it is natural to study the properties of the following 
equation 

&tu' + &Xf(u ) = 8uxx 
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with smooth data. By a classical argument, one can show that 

9 T (O9u6(t, x))2 dxdt < O(1)IJu(0, *)IIL2 

and that the left-hand side of the above inequality cannot vanish if lim ue con- 
tains a discontinuity. Now, let us consider the continuous analogue of (4.16), 
i.e., 

(4.17) e2 j j u ( (t, X))3 dxdt. 

We would like to show that the term in (4.17) does not vanish in general. For 
simplicity, we assume that u8 is a viscous travelling wave solution, i.e., 

U'(t, X) = U X Vt) 

for some velocity V and for u such that 
- Vu' + pay) = u", 

and 
lim u(4) = UL, lim u(4) = UR. 

+0 > g H-4+00 

Here UL > UR and -V(UR - UL) + f(UR) - f(UL) = 0. For such u?, we have 

g2 j (Oxu"(t, x)) dxdt = c2 j (!U ) dXdt = T (uI)3 d4, 

which does not depend on e and is in general not equal to zero. Thus the term 
in (4.17) need not vanish as e -* 0 for viscous solutions of conservation laws. 
By analogy, we expect that this observation also applies to the discrete scheme. 
This would imply that the error term (4.16) given by the nonconservative scheme 
(4.3) and (4.10) does not vanish in general as h -+ 0. 

The above observation leads us to conjecture that a nonconservative scheme, 
which contains the same viscosity terms as those of a conservative scheme, need 
not converge to the correct solution of the conservative equation in general. Nu- 
merical evidence for this conjecture will be given in ?6. This is in contradiction 
with Kami's conclusion in [18]. We also present numerical evidence in ?6 
which shows that Karni's correction scheme is not sufficient to correct the error 
to conservation. 

Proposition 4.1. Assume that the speed a in the nonconservative scheme (4.3) 
satisfies the condition (4.7); then the error estimates given in Theorem 3.3 apply 
to this scheme. 

This is easy to prove since the assumption (3.2a)-(3.2b) of ?3 (with p = 2) 
is satisfied for this scheme. One example which satisfies the assumption of 
Proposition 4.1 is given by the case when a = a2 in (4.10). 

Finally, we turn to another example of nonconservative schemes. This is a 
Lax-Friedrichs scheme in nonconservative form and is defined by its incremen- 
tal coefficients 

C(, _) = A F(fl) - F(a) 1 

(4.18) 
2 

U~(fl)-FU(a) 1 (a, ,6) ER 2 
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where (U, F) is an entropy-entropy flux satisfying conditions (4.8). Then, the 
same conclusions as before (for (4.3), (4.10)) can be obtained easily for this 
scheme. Moreover, the equivalent equation of this scheme is 

(4.19) ftw +&xf(w) = 4 1ax (( - -22f (w)2) ax)W 

which indeed is independent of (U, F) and coincides with the equivalent equa- 
tion of the original Lax-Friedrichs scheme. For the scheme (4.18), one can 
perform the same error analysis as before. 

5. CORRECTION FOR A SCHEME IN NONCONSERVATIVE FORM 

This section shows that a slight correction of any nonconservative scheme like 
(2.1a)-(2.1d) ensures its convergence to the entropy weak solution of problem 
(1.1). The method of correction used here follows ideas from DiPerna [7] as 
well as Harten and Zwas [16] and Leroux and Quesseveur [25] (also, see a recent 
paper by Harabetian and Pego [13]). We define a hybrid scheme from (2.1 a)- 
(2.1d) by switching to any given conservative scheme in the neighborhood of 
discontinuities of the solution. We use here any (conservative and first-order 
accurate) E-scheme in the region of discontinuities. In fact, we can also use 
even the Glimm scheme (which is not conservative!) as in [7]. This section 
is only theoretical and we do not know if the corrected scheme is useful for 
computational purposes. 

We consider approximate solutions {uh } defined by (2. 1 a)-(2. 1 d) with (2. 1 c) 
replaced by the following (n E N, i E Z): 

Ul Cn 12(U U 1 ) + Din 2(U+1U 7 - CinI 12 (U7 - U 7) 1+D71/2(U7+I - U7), 
(5.1) un+ I if 1u7 - u11 + u1 - u1 ? bha, 

Ul - CinI/ 2 (U - U71) + Din112(u7+1-U u) otherwise. 

In (5.1), C and D are the incremental coefficients of any (possibly high-order 
accurate) consistent scheme in nonconservative form; C and b are taken to 
be the coefficients of any E-scheme. The constants b > 0 and a E (0, 1) are 
fixed and control the switching between the two schemes under consideration. 
Heuristically, in the regions where the solution is smooth, one has I u7 - u71 l = 

0(h) < 0(ha), so that (2.1c) is always used there. The E-scheme is used only 
in the neighborhoods of the points of discontinuity of the solution. 

The following theorem proves that the slight correction of (2.1c) given by 
(5.1) is sufficient to ensure convergence of the nonconservative scheme to the 
correct solution. 

Theorem 5.1. Let {uh} be the solution constructed by the hybrid scheme in 
nonconservative form (5.1). Suppose that (2.2)-(2.3b) and the CFL condition 
Asup IfI < I are satisfied. Moreover, we assume that the constant a in (5.1) 
satisfies 

(5.2) a E (0, 1). 

Then {uh} converges in LI norm to the entropy weak solution u of problem 
(1.1). 
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Proof. It is not difficult to see that the results of ??2 and 3 still apply to (5.1). 
In view of Theorem 2.1 and Theorem 3.1, the main difficulty is to prove that 
the error to conservation (,u in (2.6) and ft in (3.4)) vanish. Let 

QT= {(i, n) E Z x N: 1u7 -_u7n11 + 1un+I - ulI < bha and nr < T} 

and consider the term 

Eh - E {ICin-112 - Cin1121 1u - l + U D7+1/2-D1+l/21 IlUi+l - UiI} T, 

(i, n)EQT 

which clearly bounds the error to conservation. We must verify that Eh tends 
to zero with h. It is then easy to deduce from this result that ,u and Q in 
(2.12) and (3.4) vanish identically and to conclude that lim uh = v = u. We 
omit these details. 

It remains to prove lim Eh = 0. One has, from (3.2) and the definition of 
QT,~ 

Eh < O(1)ha , TV(Uh(tn))T = 0(1)haT(TV(u0)) - 0, 
nx<T 

because of (5.2), which completes the proof. O 

In practice, it would be useful to know how to evaluate the numerical values 
for the constants a and b in (5.1) (no clear strategy seems to exist for that). 
This makes the use of (5.1) difficult for practical computations. A smoother 
switch than (5.1) could be considered. We also refer to Harten and Zwas [16] 
and Harabetian and Pego [13] for related matters and to Engquist and Sjogreen 
[9] for another procedure of correcting the error to conservation in a finite 
difference scheme. 

6. NUMERICAL EXPERIMENTS 

This section is intended to illustrate our results of ??2 to 5, as well as to 
provide numerical evidence for the location of the support of the measure ,P. 

We consider five numerical examples in this section. The first example is 
the upwinding scheme in nonconservative form for the Burgers equation (cf. 
(4.2)-(4.3) and (4.9)-(4.10)). We choose the following Riemann shock initial 
data 

(6.1) UO(x) {o5 if x < O 

In Figure 1 a (next page), we plot the solution at t = 1 with space increments 
h = 0.005, 0.0025, 0.00125, and 0.000625, respectively. In all these calcu- 
lations, the time increment is T = 0.2h . For this initial data, the correct shock 
speed is equal to 1. It is quite clear from Figure 1 a that the numerical solution 
converges strongly to an incorrect shock position, although the error is not so 
large. 

The numerical shock position can be computed by evaluating the source term 
on the right side of (2.6). To this end, we just need to sum the right-hand side 
of (4.13) near the curve of discontinuity in space and time. Our calculations 
show that as h decreases to zero, the numerical shock position converges to 
x = 1.00426. So the relative error of the shock position is about 0.43%. 
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FIGURE 1a. Upwind scheme in nonconservative form, t = 1, 
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FIGURE 1 c. Upwind scheme in conservative form, t = 4, 
dt/dx = 0.2 

In Figure Ib, we plot the same calculations at time t = 4. As we can see, 
the error grows bigger in time. It is almost linear in time. If we measure the 
error in the shock position, we find that it is about 1.7% as h -, 0. In order to 
illustrate that this error in the numerical shock position is not due to truncation 
error, we plot in Figure 1 c the same calculations at t = 4 using the upwinding 
scheme in conservative form. In this case, it is clear that the numerical solution 
converges to the correct shock position as the mesh sizes tend to zero. And the 
error in the nonconservative scheme is much larger than the truncation error 
made by the conservative scheme. This confirms the conjecture of ?4, as well 
as the results of ??2 and 3. 

Next we would like to demonstrate that the error due to nonconservation can- 
not be corrected by using a high-order scheme. To this end, we compare two 
nonconservative approximations of the convection term uux with first-order 
and second-order accuracy, respectively. The first-order method is an upwind- 
ing scheme in nonconservative form, i.e., (4.3) with the choice of numerical 
speed given by a (a, /3) = f'(/3). The second-order scheme is a nonconserva- 
tive second-order ENO (Essentially Nonoscillatory) scheme, cf. [15], which for 
Burgers's equation reads 

(u1- u7) =- D_ (un + 2 minmod[D u7, D+un]) if u7 > 0, 

(n+l- u) n __nD (D n ,+ - minmod [Du,n D+un]) if u7 < 0, 
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FIGURE 2a. Nonconserv. 2nd-order ENO vs. nonconserv. up- 
winding, t = 3 

where D_ and D+ are the standard backward and forward divided difference 
operators, respectively. The minmod function is defined by 

minmod (a, b) = 
fab<0 

{ sgn(a) min[lal, Ibl] if ab > 0. 

In Figures 2a and 2b, we compare the numerical solution of the nonconser- 
vative upwinding scheme with that of the nonconservative second-order ENO 
scheme, using m = 100 and m = 200, respectively. The initial data is given 
by 

(6.2) uo(x) = 2 + sinx. 

The numerical solutions are plotted at time t = 3. The correct solution is also 
plotted using the conservative second-order van Leer scheme with m = 2000 
as a reference for the "true" solution. In these pictures, the line with circles cor- 
responds to the first-order nonconservative upwinding scheme, while the solid 
line next to the line with circles corresponds to the nonconservative second-order 
ENO scheme. The solid line on the right side corresponds to the solution of the 
van Leer scheme. As we can see, the second-order nonconservative scheme only 
sharpens the numerical shock profile. But it still converges to the same wrong 
shock position as the first-order nonconservative scheme. 
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FIGURE 2b. Nonconserv. 2nd-order ENO vs. nonconserv. up- 
winding, t = 3 

There are some proposals for correcting the error due to nonconservative 
form of the scheme in a formal way. Among others is a correction scheme 
proposed by Karni [18]. Karni's idea is to correct the numerical viscous form 
in a nonconservative scheme so that the corrected scheme has the same formal 
viscous form as that of a consistent and conservative scheme. For example, let 
us consider the Lax-Friedrichs scheme for the scalar conservation law 

(6.3) ut + f ()x = 0. 

It has the form 

(6.4) u+ = j(u1I +u, 1)- (fJ+-Jn), 

where fin = f(u7) and A = Tl/h. The numerical viscous form (or equivalent 
equation) for this scheme reads 

(6.5) Ut + f(u)X = T 
(UxxI2 - Utt). 

Now let w = w(u) be a new dependent variable and let T = dw/du. The 
equation for w is given formally by 

(6.6) wt + A(w)wx = 0, 
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where A(w) = f'(u(w)). Karni realized that if one uses a "Lax-Friedrichs 
type" scheme 

(6.7) wn+ = (w, +w7n+) -(An I +XA7)(wn+ W- ) 

to approximate (6.6), it would not give seemingly a consistent weak solution for 
u. This is because the viscous form for (6.7), 

(6.8) wt + A(w)x = 2 (wxx/i2 - Wtt), 

is not consistent with the viscous form (6.5) for (6.3). To correct this inconsis- 
tency, Karni proposed to apply a "Lax-Friedrichs type" scheme to the following 
modified equation: 

(6.9) wt + A(w)wx = D 2 

with 

(6.10) D = dw (UXx/~d2 - Utt) - (Wxx /A2 - Wtt). 

The motivation for using (6.9)-(6.10) is that the viscous form of the Lax- 
Friedrichs scheme for this modified equation is formally consistent with that 
of (6.4). 

We remark that the correction on the formal level for the viscous form is 
not enough to ensure that the corrected scheme would converge to the correct 
weak solution (cf. ?3). In the following, we will test Karni's idea numerically 
for Burgers's equation with w = u2/2. Again, we use the shock Riemann 
initial data (6.1). In Figure 3, we plot a sequence of numerical solutions ob- 
tained by applying the "Lax-Friedrichs type " scheme to equations (6.9)-(6. 10). 
The correction term D is discretized by a centered difference approximation as 
suggested by Kami. The three curves on the left correspond to the numerical 
solutions of Karni's scheme using h = 0.005, 0.0025, and 0.00125, respec- 
tively. The correct shock is at x = 1. As we can see, Kami's scheme does 
not converge to the correct weak solution. The curve with circles on the right 
corresponds to the approximation without any correction, i.e., D is set to be 
zero in (6.9). Obviously, it gives the wrong solution. It is interesting to note 
that the corrected scheme produces an error of the same order as that of the 
uncorrected scheme. What is even more interesting is that if we replace D in 
(6.9) by D/2, it seems to give the correct solution; see the curve in the middle 
marked with '+' signs. We do not have a good explanation for this behavior. 

Next we consider the modified Lax-Friedrichs scheme for Burgers's equation. 
It has the form 

(6.11) un+1 = l(ul + 2u + un+) - (f(un1) -f( pu1)). 

There are two distinct features for this version of the Lax-Friedrichs scheme. 
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FIGURE 3. Lax-Friedrichs scheme in nonconservative form, t = 1 

First it satisfies a stronger version of entropy inequality as stated in the proof 
of Lemma 3.2. It is an E-scheme. Secondly, its viscous form reads 

(6.12) Ut + f(u)X = -(uxx( tt). 

Thus, according to Theorem 3.3, we expect that the error due to nonconserva- 
tion is bounded uniformly in time. But what we found numerically in this case 
is even better than what is stated in the theorem. 

We now apply scheme (4.18) to Burgers's equation with the quadratic entropy 
U(u) = u2. For the shock Riemann initial data (6.1), we found that the error 
in the shock position is only about 0.06% for time t = 1 and about 0.2% at 
time t = 4 as the mesh sizes tend to zero. In Figure 4a (next page), we plot 
the solutions at time t = 1 using h = 0.005, 0.0025, 0.00125, and 0.000625, 
respectively. The errors seem to be too small to tell from the "eye norm". But 
the smallness of the error for short times is deceptive because the error grows 
almost linearly in time. By the time t = 16, the error is of the order 0.8%. 

We also computed with the modified Lax-Friedrichs scheme (6.11), using the 
variable w = u2/2 as in (6.6) with Karni's correction. Recall there seems to 
be a mysterious factor of 2 missing in the Lax-Friedrichs type scheme with 
Karni's correction. Now, with the modified Lax-Friedrichs scheme, we do have 
a factor of 2 in the viscous form (6.10). This seems to make a big difference. In 
Figure 4b, we approximate the Burger's equation by the modified Lax-Friedrichs 
scheme using the variable w = u2/2 with Karni's correction (6.9)-(6.10). The 
0(1) error in the shock position seems to be substantially reduced in this case. 
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FIGURE 5a. Hybrid Lax-Wendroff scheme with van Leer scheme, 
t= 2, m = 100, 200, 400 

Again, the smallness of the error is only true for short times. The error will grow 
with time. (In a revised version of [ 1 8], Karni agreed with our conclusions here.) 

Lastly, we test our correction scheme proposed in ?5. We choose two ap- 
proaches in forming the hybrid scheme. The first choice is to use the Lax- 
Wendroff scheme in the smooth regions and van Leer's scheme in the region 
containing a discontinuity. The switching strategy is given by (5.1) in ?5. We 
remark that a similar strategy has been used by Harten and Zwas [16] and 
by Harabetian and Pego [13]. Note also that Lax-Wendroff does not satisfy 
the TVD assumption of Theorem 5.1. We could use a TVD scheme here as 
well, but this would not change the conclusions below. In Figures 5a and 5b, 
we plot the solution at time t = 2 with initial data given by (6.2). In Fig- 
ure 5a, we choose the switching parameters a and b in (5.1) to be a = 0.8 
and b = 0.5. We plot the solutions using m = 100, 200, and 400, respec- 
tively, and compare them with the solution obtained by using the second-order 
conservative van Leer scheme with m = 2000. We can see clearly that, as 
the mesh sizes tend to zero, the numerical solution converges to the correct 
weak solution. In Figure 5b (next page), we perform the same calculations 
but with a different choice of switching parameters a = 0.6, b = 1. The de- 
creasing of a corresponds to fewer points in the inner region containing the 
shock discontinuity. We could still see that the numerical solution converges 
to the physical solution as we increase the numerical resolution, although the 
coarse-grid calculation is a bit rough. In Figure 5c (next page), we compute the 
solution at time t = 3, now with a slightly bigger value for a, a = 0.8 and 
the same value for b, b = 1, but less grid points, m = 400. The numerical 
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solution converges beautifully to the physical solution. This confirms our theory 
in ? 5. It also demonstrates that the choices of the switching parameters a and 
b are not very sensitive in the calculations. 

Our second choice of hybridization is between a Leap-Frog scheme and the 
Glimm scheme [10]. Naturally, we use the Glimm scheme near the region of 
shock discontinuity. In the calculations, we choose the initial data as uo(x) = 
sinx. The solution is computed at time t = 0.4. In Figure 6a, we plot the 
numerical solution using 400 grid points. The inner region has the width 3 = 
0.1 in this case. There are about 40 grid points in the inner region. The shock 
position is clearly very well approximated. In Figure 6b, we reduce the width 
of the inner region to 3 = 0.025. There are about 10 grid points in the inner 
region. The shock position is still well captured. Moreover, because the outer 
region becomes larger, the smooth part of the solution is better approximated 
than in the case of Figure 6a. 
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FIGURE 6a. Hybrid centered difference scheme with Glimm 
scheme, t = 0.4 



528 T. Y. HOU AND P. G. LE FLOCH 

1.5 

O. - 

-0.5 - 

-1 

-1.5 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

dx=0.0025, 10 inner grid points, vs. van Leer scheme using m=2000 

FIGURE 6b. Hybrid centered difference scheme with Glimm 
scheme, t = 0.4 

ACKNOWLEDGMENTS 

The authors want to thank Peter D. Lax and Robert Kohn for their support 
of, and interest in, this work. The work of the first author has been supported 
in part by an NSF grant DMS-90-03202, an Air Force Grant AFOSR-90-0090, 
and a Sloan research fellowship. This work was done while the second author 
was a Courant Instructor at the Courant Institute of Mathematical Sciences, and 
on leave from a research position at the Ecole Polytechnique, and supported in 
part by an NSF grant DMS-88-0673 1, and the Centre National de la Recherche 
Scientifique. 

BIBLIOGRAPHY 

1. J. F. Colombeau and A. Y. Leroux, Numerical methods for hyperbolic systems in noncon- 
servative form using products of distributions, Advances in Computer Methods for P.D.E., 
vol. 6 (R. Vichnevetsky and R. S. Stepleman, eds.), Inst. Math. Appl. Conf. Series, Oxford 
Univ. Press, New York, 1987, pp. 28-37. 

2. F. Coquel and Ph. Le Floch, Convergence offinite difference schemes for conservation laws in 
several space dimensions: the corrected antidiffusive flux approach, Math. Comp. 57 (1991), 
169-210. 

3. , On the finite volume method for multidimensional conservation laws, preprint, De- 
cember 1991, Courant Institute, New York University (unpublished). 

4. M. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, 
Math. Comp. 34 (1980), 1-21. 



ERROR ANALYSIS FOR NONCONSERVATIVE SCHEMES 529 

5. C. M. Dafermos, Characteristics in hyperbolic conservation laws. A study of the structure and 
the asymptotic behavior of solutions (R. J. Knops, ed.), Heriot-Watt University, Nonlinear 
Analysis and Mechanics: Heriot-Watt Symposium Volume I, 1981, pp. 1-58. 

6. G. Dal Maso, Ph. Le Floch, and F. Murat, Definition and weak stability of nonconservative 
products, Preprint CMAP, Ecole Polytechnique, Palaiseau (France). 

7. R. DiPema, Finite difference scheme for conservation laws, Comm. Pure Appl. Math. 25 
(1982), 379-450. 

8. R. J. DiPema and A. Majda, The validity of nonlinear geometric optics for weak solutions 
of conservation laws, Comm. Math. Phys. 98 (1985), 313-347. 

9. B. Engquist and B. Sjogreen, Numerical approximation of hyperbolic conservation laws with 
stiff terms, UCLA Computational and Applied Mathematics Report 89-07, 1989. 

10. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of conservation laws, 
Comm. Pure Appl. Math. 18 (1965), 695-715. 

11. J. Glimm and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation 
laws, Mem. Amer. Math. Soc. No. 101, Amer. Math. Soc., Providence, RI, 1970. 

12. J. Goodman and P. D. Lax, On dispersive difference schemes, Comm. Pure Appl. Math. 41 
(1988), 591-613. 

13. E. Harabetian and R. Pego, Efficient hybrid shock capturing scheme, IMA Preprint Series 
No. 743, Minneapolis, MN, 1990. 

14. A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 
(1983), 357-393. 

15. A. Harten and S. Osher, Uniformly high order accurate non-oscillatory schemes I, SIAM J. 
Numer. Anal. 24 (1987), 279-309. 

16. A. Harten and G. Zwas, Self-adjusting fluid schemes for shock computations, J. Comput. 
Phys. 9 (1972), 568-583. 

17. T. Y. Hou and P. D. Lax, Dispersive approximations in fluid dynamics, Comm. Pure Appl. 
Math. 44 (1991), 1-40. 

18. S. Kami, Viscous shock profiles and primitive formulations, SIAM J. Numer. Anal. 29 (1992), 
1592-1609. 

19. S. N. Kruzkov, First order quasilinear equations in several independent variables, Math. 
USSR-Sb. 10 (1970), 217-243. 

20. N. N. Kuznetsov, Accuracy of some approximate method for computing the weak solutions 
of a first order quasilinear equation, USSR Comput. Math. and Math. Phys. 16 (1976), 
105-119. 

21. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock 
waves, CBMS Monographs, vol. 11, SIAM, Philadelphia, PA, 1973. 

22. P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 
(1960), 217-237. 

23. Ph. Le Floch and J.-G. Liu, Entropy and monotonicity (EMO) consistent schemes for con- 
servation laws, preprint, 1993. 

24. Ph. Le Floch and T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconser- 
vative form, Forum Math. 5 (1993), 261-280. 

25. A. Y. Leroux and P. Quesseveur, Convergence of an antidiffusive Lagrange-Euler scheme 
for quasilinear equations, SIAM J. Numer. Anal. 21 (1984), 985-994. 

26. G. Moretti, The A-scheme, Comput. & Fluids 7 (1979), 191-205. 

27. E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equa- 
tions, SIAM J. Numer. Anal. 28 (1991), 891-906. 

28. J. A. Trangenstein, A second-order algorithm for the dynamic response of soils, Impact Com- 
put. Sci. Engrg. 2 (1990), 1-39. 

29. J. A. Trangenstein and P. Colella, A higher-order Godunov method for modeling finite defor- 
mations in elastic-plastic solids, Comm. Pure Appl. Math. 44 (1991), 41-100. 



530 T. Y. HOU AND P. G. LE FLOCH 

30. A. I. Volpert, The space BVand quasilinear equations, Math. USSR Sb. 2 (1967), 225-267. 
31. G. Zwas and J. Roseman, The effect of nonlinear transformations on the computation of 

weak solutions, J. Comput. Phys. 12 (1973), 179-186. 

CALIFORNIA INSTITUTE OF TECHNOLOGY, APPLIED MATHEMATICS, 217-50, PASADENA, CA 91125 
E-mail address: houCama. caltech. edu. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, Los ANGELES, CA 
90089 

E-mail address: leflochfmath.usc.edu. 


	Cit r53_c53: 
	Cit r58_c58: 
	Cit r61_c61: 
	Cit r70_c70: 


